Azure Data Engineers sind für die Integration von Daten aus unterschiedlichen Datensystemen sowie den Aufbau, die Verwaltung und Wartung hierfür benötigter Datenverarbeitungs-Pipelines zuständig. Du erfährst, wie Künstliche Intelligenz im Beruf eingesetzt wird.
Themen
Microsoft Azure Administration
Voraussetzungen für Azure-Administratoren (ca. 1 Tag)
Azure Portale (u. a. PowerShell)
Ressourcen-Manager
Ressourcen und Ressourcengruppen
Azure-Vorlagen (Bicep-Dateien)
Verwalten von Azure-Identitäten und -Governance (ca. 2 Tage)
Microsoft Entra ID
Benutzer:innen und Gruppen
Geräteeinstellungen
Massenbenutzeraktualisierungen
Gastkonten
Self-Service-Kennwort
Rollenbasierte Zugriffskontrolle (RBAC)
Zugriffszuweisungen
Verzeichnisse
Abonnements und Governance: Azure-Richtlinien, Ressourcen, Tags
Kostenmanagement
Managementgruppen
Virtuelle Netzwerke konfigurieren und verwalten (ca. 4,5 Tage)
Virtuelle Netzwerke
VNET-Peering
Private und öffentlichen IP-Adressen, Netzwerkrouten, Netzwerkschnittstellen, Subnetze und virtuelle Netzwerke
Namensauflösung: Azure DNS
Sicherer Zugriff auf virtuelle Netzwerke
NSG zu einem Subnetz oder einer Netzwerkschnittstelle
Azure Bastion-Dienst
Lastausgleich mit Application Gateway
Lokale Konnektivität
Netzwerkleistungsmonitor
Network Watcher
Probleme mit externen Netzwerken
Integrieren eines lokalen Netzwerks in ein virtuelles Azure-Netzwerk
ExpressRoute
Azure-WAN
Speicherplatz implementieren und verwalten (ca. 2 Tage)
Speicherkonten
Zugriffssignatur
Zugriffsschlüssel
Azure-Speicherreplikation
Azure AD-Authentifizierung
Azure Storage Explorer
AZCopy
Azure-Dateien und Azure-Blob-Speicher
Azure-Dateifreigabe
Azure-Dateisynchronisierungsdienst
Künstliche Intelligenz (KI) im Arbeitsprozess
Vorstellung von konkreten KI‐Technologien
sowie Anwendungsmöglichkeiten im beruflichen Umfeld
Bereitstellen und Verwalten von Azure-Rechenressourcen (ca. 3,5 Tage)
Virtual Machines (VMs) für hohe Verfügbarkeit und Skalierbarkeit
Azure Resource Manager-Vorlage (ARM)
VHD-Vorlage
Azure-Festplattenverschlüsselung
VM-Größen
Hinzufügen von Datendatenträgern
Konfigurieren des Netzwerks
Container
Container Apps
Azure Container-Instanzen (ACI)
Web-Apps
Überwachen und Sichern von Azure-Ressourcen (ca. 2 Tage)
Azure Monitor
Metriken
Log Analytics
Diagnoseeinstellungen
Application Insights
Sicherungs- und Wiederherstellungsvorgänge
Sicherungsberichte
Azure-Sicherungsdienst
Softlöschvorgang
Sicherungsrichtlinien
Azure Site
Projektarbeit (ca. 5 Tage)
Zur Vertiefung der gelernten Inhalte
Präsentation der Ergebnisse
Zertifizierungsprüfung AZ-104: Microsoft Azure Administrator
Relationale Datenbanken mit SQL
Grundlagen von Datenbanksystemen mit Access (ca. 3 Tage)
Redundante Daten
Datenintegrität
Normalisierung
BCNF
DB-Entwurf
Beziehung 1:n, m:n
Datentypen
Tabellen
Primär- und Fremdschlüssel
Referentielle Integrität
Beziehungen zwischen Relationen
Entity-Relationship-Modell
Index, Standartwert
Einschränkungen (Check)
Abfragen
Formulare, Berichte
Zirkelbezug
Einführung in SQL Server Management Studio (SSMS) (ca. 2 Tage)
Übersicht
Phys. DB-Design
Tabellen erstellen
Datentypen in MS SQL
Primary Key
Einschränkungen, Standartwerte, Diagramm, Beziehungen
Backup und Restore
Künstliche Intelligenz (KI) im Arbeitsprozess
Vorstellung von konkreten KI‐Technologien
sowie Anwendungsmöglichkeiten im beruflichen Umfeld
Einführung in DDL (ca. 8 Tage)
SQL Grundlagen
Syntax
Befehle
Mehrere Tabellen
Operatoren
Ablaufkontrolle
Skalarwertfunktionen
Tabellenwertfunktionen
Systemfunktionen
Prozeduren mit und ohne Parameter
Fehlertypen
Transaktionen, Sperren, DeadLock
DCL – Data Control Language (ca. 1 Tag)
Anmeldungen
Benutzer:innen
Rollen
Berechtigungen
Datentypen, Datenimport und -export (ca. 1 Tag)
Datentyp geography
Datenexport, Datenimport
Projektarbeit (ca. 5 Tage)
Zur Vertiefung der gelernten Inhalte
Präsentation der Projektergebnisse
Programmierung mit Python
Grundlagen Python (ca. 1 Tag)
Geschichte, Konzepte
Verwendung und Einsatzgebiete
Syntax
Erste Schritte mit Python (ca. 5 Tage)
Zahlen
Zeichenketten
Datum und Zeit
Standardeingabe und -ausgabe
list, tuple dict, set
Verzweigungen und Schleifen (if, for, while)
Künstliche Intelligenz (KI) im Arbeitsprozess
Vorstellung von konkreten KI‐Technologien
sowie Anwendungsmöglichkeiten im beruflichen Umfeld
Funktionen (ca. 5 Tage)
Eigene Funktionen definieren
Variablen
Parameter, Rekursion
Funktionale Programmierung
Fehlerbehebung (ca. 0,5 Tage)
try, except
Programmunterbrechungen abfangen
Objektorientierte Programmierung (ca. 4,5 Tage)
Python-Klassen
Methoden
Unveränderliche Objekte
Datenklasse
Vererbung
Grafische Benutzeroberfläche (ca. 1 Tag)
Buttons und Textfelder
grid-Layout
Dateiauswahl
Projektarbeit (ca. 3 Tage)
Zur Vertiefung der gelernten Inhalte
Präsentation der Projektergebnisse
Data Engineer
Grundlagen Business Intelligence (ca. 2 Tage)
Anwendungsfelder, Dimensionen einer BI Architektur
Grundlagen Business Intelligence, OLAP, OLTP, Aufgaben der Data Engineers
Data Warehousing (DWH): Umgang und Verarbeitung von strukturierten, semi-strukturierten und unstrukturierten Daten
Anforderungsmanagement (ca. 2 Tage)
Aufgaben, Ziele und Vorgehensweise in der Anforderungsanalyse
Datenmodellierung, Einführung/Modellierung mit ERM
Einführung/Modellierung in der UML
· Klassendiagramme
· Use-Case Analyse
· Aktivitätsdiagramme
Künstliche Intelligenz (KI) im Arbeitsprozess
Vorstellung von konkreten KI‐Technologien
sowie Anwendungsmöglichkeiten im beruflichen Umfeld
Datenbanken (ca. 3 Tage)
Grundlagen von Datenbanksystemen
Architektur von Datenbankmanagementsystemen
Anwendung RDBMS
Umsetzung Datenmodell in RDBMS, Normalformen
Praktische und theoretische Einführung in SQL
Grenzen von Relationalen Datenbanken, csv, json
Data Warehouse (ca. 4 Tage)
Star Schema
Datenmodellierung
Erstellung Star Schema in RDBMS
Snowflake Schema, Grundlagen, Datenmodellierung
Erstellung Snowflake Schema in RDBMS
Galaxy Schema: Grundlagen, Datenmodellierung
Slowly Changing Dimension Tables Typ 1 bis 5 – Restating, Stacking, Reorganizing, mini Dimension und Typ 5
Einführung in normal, causal, mini und monster, heterogeneous und sub Dimensions
Vergleich von state und transaction oriented
Faktentabellen, Density und Storage vom DWH
ETL (ca. 4 Tage)
Data Cleansing
· Null Values
· Aufbereitung von Daten
· Harmonisierung von Daten
· Anwendung von Regular Expressions
Data Understanding
· Datenvalidierung
· Statistische Datenanalyse
Datenschutz, Datensicherheit
Praktischer Aufbau von ETL-Strecken
Data Vault 2.0, Grundlagen, Hubs, Links, Satellites, Hash Key, Hash Diff.
Data Vault Datenmodellierung
Praktischer Aufbau eines Data Vault Modells – Raw Vault, Praktische Umsetzung von Hash-Verfahren
Projektarbeit (ca. 5 Tage)
Zur Vertiefung der gelernten Inhalte
Präsentation der Projektergebnisse
Änderungen möglich. Die Lehrgangsinhalte werden regelmäßig aktualisiert.